硬盤維修之硬盤結構組成認識
硬盤(英文名:Hard Disc Drive 簡稱HDD)是電腦主要的存儲媒介之一,由一個或者多個鋁制或者玻璃制的碟片組成。這些碟片外覆蓋有鐵磁性材料。絕大多數硬盤都是固定硬盤,被永久性地密封固定在硬盤驅動器中。
硬盤的物理結構
1、磁頭
硬盤內部結構磁頭是硬盤中最昂貴的部件,也是硬盤技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬盤的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬盤設計上的局限。而MR磁頭(Magnetoresistive heads),即磁阻磁頭,采用的是分離式的磁頭結構:寫入磁頭仍采用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則采用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的準確性也相應提高。而且由于讀取的信號幅度與磁道寬度無關,故磁道可以做得很窄,從而提高了盤片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。目前,MR磁頭已得到廣泛應用,而采用多層結構和磁阻效應更好的材料制作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。
2、磁道
當磁盤旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁盤表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁道。這些磁道用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁盤上的信息便是沿著這樣的軌道存放的。相鄰磁道之間并不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁道,而硬盤上的磁道密度則遠遠大于此值,通常一面有成千上萬個磁道。
3、扇區
磁盤上的每個磁道被等分為若干個弧段,這些弧段便是磁盤的扇區,每個扇區可以存放512個字節的信息,磁盤驅動器在向磁盤讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁道分為18個扇區。
4、柱面
硬盤通常由重疊的一組盤片構成,每個盤面都被劃分為數目相等的磁道,并從外緣的“0”開始編號,具有相同編號的磁道形成一個圓柱,稱之為磁盤的柱面。磁盤的柱面數與一個盤面上的磁道數是相等的。由于每個盤面都有自己的磁頭,因此,盤面數等于總的磁頭數。所謂硬盤的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬盤的CHS的數目,即可確定硬盤的容量,硬盤的容量=柱面數*磁頭數*扇區數*512B。
硬盤的邏輯結構
1. 硬盤參數釋疑
到目前為止, 人們常說的硬盤參數還是古老的 CHS(Cylinder/Head/Sector)參數。那么為什么要使用這些參數,它們的意義是什么?它們的取值范圍是什么?
很久以前, 硬盤的容量還非常小的時候,人們采用與軟盤類似的結構生產硬盤。也就是硬盤盤片的每一條磁道都具有相同的扇區數。由此產生了所謂的3D參數 (Disk Geometry)。 既磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的尋址方式。
其中:
磁頭數(Heads)表示硬盤總共有幾個磁頭,也就是有幾面盤片, 最大為 255 (用 8 個二進制位存儲);
柱面數(Cylinders) 表示硬盤每一面盤片上有幾條磁道,最大為 1023(用 10 個二進制位存儲);
扇區數(Sectors) 表示每一條磁道上有幾個扇區, 最大為 63(用 6個二進制位存儲);
每個扇區一般是 512個字節, 理論上講這不是必須的,但好像沒有取別的值的。
所以磁盤最大容量為:
255 * 1023 * 63 * 512 / 1048576 = 7.837 GB ( 1M =1048576 Bytes )或硬盤廠商常用的單位:
255 * 1023 * 63 * 512 / 1000000 = 8.414 GB ( 1M =1000000 Bytes )
在 CHS 尋址方式中,磁頭,柱面,扇區的取值范圍分別為 0到 Heads - 1。0 到 Cylinders - 1。 1 到 Sectors (注意是從 1 開始)。
2. 基本 Int 13H 調用簡介
BIOS Int 13H 調用是 BIOS提供的磁盤基本輸入輸出中斷調用,它可以完成磁盤(包括硬盤和軟盤)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是 CHS 尋址方式, 因此最大識能訪問 8 GB 左右的硬盤 (本文中如不作特殊說明,均以 1M = 1048576 字節為單位)。
3. 現代硬盤結構簡介
在老式硬盤中,由于每個磁道的扇區數相等,所以外道的記錄密度要遠低于內道, 因此會浪費很多磁盤空間 (與軟盤一樣)。為了解決這一問題,進一步提高硬盤容量,人們改用等密度結構生產硬盤。也就是說,外圈磁道的扇區比內圈磁道多,采用這種結構后,硬盤不再具有實際的3D參數,尋址方式也改為線性尋址,即以扇區為單位進行尋址。
為了與使用3D尋址的老軟件兼容 (如使用BIOSInt13H接口的軟件), 在硬盤控制器內部安裝了一個地址翻譯器,由它負責將老式3D參數翻譯成新的線性參數。這也是為什么現在硬盤的3D參數可以有多種選擇的原因(不同的工作模式,對應不同的3D參數, 如 LBA,LARGE,NORMAL)。
4. 擴展 Int 13H 簡介
雖然現代硬盤都已經采用了線性尋址,但是由于基本 Int13H 的制約,使用 BIOS Int 13H 接口的程序, 如 DOS 等還只能訪問 8 G以內的硬盤空間。為了打破這一限制, Microsoft 等幾家公司制定了擴展 Int 13H 標準(Extended Int13H),采用線性尋址方式存取硬盤, 所以突破了 8 G的限制,而且還加入了對可拆卸介質 (如活動硬盤) 的支持。
推薦閱讀:減少碎片對沒有經驗的用戶的影響